Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges
نویسندگان
چکیده
منابع مشابه
Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
A systematic study of simulated atomic-resolution electronic energy-loss spectroscopy (EELS) for different graphene nanoribbons (GNRs) is presented. The results of ab initio studies of carbon [Formula: see text] core-loss EELS on GNRs with different ribbon edge structures and different hydrogen terminations show that theoretical core-loss EELS can distinguish key structural features at the atom...
متن کاملFundamentals of electron energy-loss spectroscopy
Electron energy-loss spectroscopy (EELS) is an analytical technique that is based on inelastic scattering of fast electrons in a thin specimen. In a transmission electron microscope (TEM) it can provide structural and chemical information about a specimen, even down to atomic resolution. This review provides an overview of the physical basis and new developments and applications of EELS in scan...
متن کاملElectron energy-loss spectroscopy study of ZnO nanobelts.
Nanobelts of ZnO have well-defined shapes that are enclosed by {0001}, {0110} and {2110} facets. The nanobelts grow along [0110] and [2110] with large flat surfaces of +/-(0001) and +/-(0110), respectively. Electron energy-loss spectroscopy has been applied to study the electronic structure of ZnO nanobelts of different growth orientations. A plasmon peak observed at 13 eV is suggested to be th...
متن کاملElectron energy-loss spectroscopy in the TEM
Electron energy-loss spectroscopy (EELS) is an analytical technique that measures the change in kinetic energy of electrons after they have interacted with a specimen. When carried out in a modern transmission electron microscope, EELS is capable of giving structural and chemical information about a solid, with a spatial resolution down to the atomic level in favourable cases. The energy resolu...
متن کاملImage simulation for electron energy loss spectroscopy.
Aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 A in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2015
ISSN: 0953-8984,1361-648X
DOI: 10.1088/0953-8984/27/30/305301